Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

Qv A~

~

Il
>

Red Hat Blog Menu v

Continuous performance and scale
validation of Red Hat OpenShift Al
model-serving stack

January 17,2024 ‘ Kevin Pouget \ 7-minute read

Artificial intelligence

< Back to all posts

Red Hat OpenShift Al is an artificial intelligence (Al) platform portfolio that provides tools to
train, tune, serve, monitor and manage Al and machine learning (ML) experiments and models on
Red Hat OpenShift. OpenShift Al builds on the proven capabilities of OpenShift to provide a
single, consistent, enterprise-ready hybrid Al and MLOps platform.

The model serving stack included in OpenShift Al is generally available (GA) as of December
2023 (release 2.5), meaning that OpenShift Al is fully operational to deploy and serve inference
models via the KServe API. You may have read my colleague David Gray's article about the
performance of this model serving stack for large language models (LLMs). This article provides
a different look at that same model serving stack. It discusses how we stress tested the model
deployment and model serving controllers to confirm that they perform and scale well in single-

10f17 10/20/25, 1:36 PM

https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://www.redhat.com/en/topics/ai/what-is-mlops
https://www.redhat.com/en/topics/ai/what-is-mlops
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.5/html/working_on_data_science_projects/serving-large-language-models_serving-large-language-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.5/html/working_on_data_science_projects/serving-large-language-models_serving-large-language-models
https://kserve.github.io/website/0.11/reference/api/
https://kserve.github.io/website/0.11/reference/api/
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:75501#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:75501#rhdc-search-listing
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

model, multi-model and many-model environments.

The following sections present the results of three different flavors of performance and scale
testing. Each flavor focuses on a particular aspect of the product:

¢ Single-model performance testing: Focuses on the performance of the model and its
serving runtime to verify that it does not regress over the releases.

e Multi-model performance and scale testing: Focuses on the performance of the model
serving stack when running under heavy load but at low scale.

¢ Many-model scale testing: Focuses on the scalability of the model deployment stack when

running at large scale.

These tests ran on an NVIDIA DGX-A100 system tailored for Al computing with eight
A100-40GB GPUs, 256 CPU cores and 1TB of main memory.

The performance and scale testing was performed in a transparent and reproducible manner
under the control of continuous integration (Cl) automation. There was no human interaction
involved in the test execution and generation of the visualization charts. These tests will be used
in our continuous performance testing environment as a baseline for confirming that future
releases of OpenShift Al do not degrade the model serving performance.

Single-model performance evaluation

The first test scenario focuses on capturing the performance of a model and the model serving
runtime. This is the base of our continuous performance testing, where we want to ensure that
various key performance metrics will not regress over time.

The load test consists of a wrapper of the GHZ benchmark tool, which runs multiple ghz
instances concurrently. The test configuration is the following:

e The model under test runs alone in the cluster with no other model instantiated

e 32 queries randomly picked up from a subset of the Hugging Face OpenOrca dataset

¢ 16 ghz workers running in parallel

e Duration of 10 minutes

e The model runs on one NVIDIA A100-40GB GPU
Here is an illustration of one test execution. We see the model’s latency per token (also called

Time Per Output Token (TPOT)). We see that smaller models, like the flan-t5 small and large,
answer much faster than bigger models. Also, for a given model, the latency per token can vary

2 0f17 10/20/25, 1:36 PM

https://ghz.sh/
https://ghz.sh/
https://huggingface.co/datasets/Open-Orca/OpenOrca
https://huggingface.co/datasets/Open-Orca/OpenOrca
https://deepleaps.com/news/openorca-a-new-chapter-in-open-source-ai/
https://deepleaps.com/news/openorca-a-new-chapter-in-open-source-ai/
https://ghz.sh/
https://ghz.sh/

Continuous performance and scale validation of Red Hat O...

3o0f17

significantly depending on the number of tokens requested.

Detailed latency/token of the load test

index=0

800 model_name=flan-t5-small-gpu
L index=1

model_name=flan-t5-large-gpu
index=2

700 ° ¢ model_name=bloom-560m

. % index=3

. model_name=mpt-7b-instruct2

600

500
400

300

{ Latency per token (in ms/token)
Lower is better

200

100

08:20 08:30 08:40 08:50 09:00 09:10 09:20
Dec 5, 2023

Timeline

Details of the latency per token of the load test answers

An in-depth analysis of the model performance was outside the scope of this work. See our other
recently published post, Evaluating LLM Inference Performance on Red Hat OpenShift Al, to
better understand how we evaluate the performance of the llama-2 model in terms of latency,
throughput, and cost on AWS instances.

From these single-model benchmarks, we extract various performance indicators that will be
compared from release to release, to ensure that they do not regress. The plots below show an
illustration of the model’s latency per token distribution, the throughput (number of token per
second over the test duration) and average latency.

10/20/25, 1:36 PM

https://www.redhat.com/en/blog/continuous-performance-a...

https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

Distribution of the latency/token of the model answers
mpt-7b-instruct2

version=2.4.0 version=2.5.0-GA

max
99th percentile
90th percentile
Q3 (75%)
median (50%)
Q1 (25%)

min

200

150

100

{ Latency per token (in ms/token)
Lower is better

50

version=2.1.0 version=2.2.0 version=2.3.0

Distribution of the latency per token of the mpt-7b-instruct2 model with 16 virtual users, against
the last five releases of OpenShift Al/KServe

Throughput and latency of the load tests
for 16 VUs

—e— Throughput
T] —e— Latency

200

150

100

Throughput (in tokens/s))
Higher is better
-~
{ Average latency (in s)
Lower is better

50

0 version=2.1.0 version=2.2.0 version=2.3.0 version=2.4.0 version=2A5.0-GA0

Throughput and average latency of the mpt-7b-instruct2 model with 16 virtual users, against the
last five releases of OpenShift Al/KServe

The data points of the last version, 2.5.0-GA, will be used as reference for the regression
analyses of the upcoming versions. The minor fluctuations before the GA version are expected.
They come from the stabilization of the model serving stack. From now on, the OpenShift Al

4 of 17 10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O...

50f17

https://www.redhat.com/en/blog/continuous-performance-a...

quality engineering (QE) team will track performance improvements and degradation as we

enhance our model serving capabilities.

Multi-model performance and scale testing

Our second test involves a larger-scale scenario. In it, we deploy one model per GPU on each of
the eight GPUs of the NVIDIA DGX-AI00. We perform a concurrent load test against all models
simultaneously. This mimics a production inference service deployment with users querying the

different models deployed on it.

Once this concurrent test is completed, we perform a sequential round of load testing on all of

the models. This second round of tests provides a base-line for measuring any performance

degradation that may appear during the concurrent testing.

We deployed two instances of each of these four models for this multi-model test:

flan-t5-small-gpu
flan-t5-large-gpu
bloom-560m

- mpt-7b-instruct2

Detailed latency/token of the load test

900 .
800 ° .
700 3

600

500

Lower is better

400

300

{ Latency per token (in ms/token)

200

100

016:30 16:45 17:00 17:15 17:30 17:45 18:00

Dec 5, 2023

Timeline

The plot above gives a visual overview of the test scenario:

1. Each color corresponds to a distinct model instance

test_name

18:15

index=0
model_name=flan-t5-large-gpu-1
index=1
model_name=flan-t5-small-gpu-1
index=2
model_name=bloom-560m-1
index=3
model_name=mpt-7b-instruct2-1
index=4
model_name=flan-t5-large-gpu-2
index=5
model_name=flan-t5-small-gpu-2
index=6
model_name=bloom-560m-2
index=7
model_name=mpt-7b-instruct2-2

10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

2. All eight models are queried concurrently during the first ten minutes (from 16:35 to 16:45)

o The points overlap, showing that all the models are queried simultaneously

3. All eight models are queried sequentially after 16:45

o Each period of 10 minutes has a single color, showing that only model is being queried

Consider the two instances of the mpt-7b-instruct2 model (indexes 3 and 7 / colors purple and

light green):

Throughput and latency of the load tests
for 16 VUs

—e— Throughput
——— —e— Latency
200 7

150

100

Higher is better
-
Lower is better

Throughput (in tokens/s))
{ Average latency (in s)

50

0 .
mpt-7b-instruct2-1 mpt-7b-instruct2-1 mpt-7b-instruct2-2 mpt—7b—mstruct2—9
Concurrent Sequential Concurrent Sequential

Throughput and average latency of the mpt-7b-instruct2 model with 16 virtual users, during
the concurrent and sequential testing

The performance of the concurrent and sequential tests is very similar, which was the expected
result. This means that at this level of concurrency, OpenShift Al data plane is not saturated, and
itis able to serve all the requests in due time.

After looking at the performance of single- and multi-model deployments, let us continue with
the many-model scale test, where we study how OpenShift Al behaves when a large number of
models are deployed simultaneously.

Many-model scale testing

Many-model scale testing aims to verify that all the controllers involved in the model serving
stack can deploy many models concurrently. This test stretched the NVIDIA DGX-A100 system to
deploy 204 models. We had to tune three settings to reach this goal:

6 of 17 10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O...

https://www.redhat.com/en/blog/continuous-performance-a...

¢ Increase the maximum number of pods per node: OpenShift nodes are configured by
default to run only 250 pods per node. However, large servers, such as the NVIDIA DGX-AT00,
can support more pods than that. See this guide for the procedure to increase the number of

pods allowed.

¢ Tune the ServiceMesh control plane: The default ServiceMeshControlPlane settings are

tuned for general purpose use cases where resources may be constrained. The configuration

below optimizes the ServiceMeshControlPlane so that it can efficiently support a large
number of models. The PILOT_FILTER_GATEWAY_CLUSTER_CONFIG : "true” flag setting

significantly reduces the memory Istio consumption, as the cluster configuration is now sent to

a reduced set of endpoints.

cat <<EOF > smcp-patch.yaml
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane

metadata:
name: data-science-smcp
namespace: istio-system

spec:
gateways:
egress:
runtime:
container:
resources:
limits:
cpu: 1024m
memory: 4G
requests:
cpu: 128m
memory: 1G
ingress:
runtime:
container:
resources:
limits:
cpu: 1024m
memory: 4G
requests:
cpu: 128m
memory: 1G

7 of 17

10/20/25, 1:36 PM

https://docs.openshift.com/container-platform/4.14/nodes/nodes/nodes-nodes-managing-max-pods.html
https://docs.openshift.com/container-platform/4.14/nodes/nodes/nodes-nodes-managing-max-pods.html

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

8 of 17

runtime:
components:
pilot:
container:
env:
PILOT FILTER GATEWAY CLUSTER CONFIG: "true"
resources:
limits:
cpu: 1024m
memory: 4G
requests:
cpu: 128m
memory: 1024Mi
EOF

kubectl patch smcp/data-science-smcp -n istio-system --type=merge --pa

e Limit sidecar-proxy endpoints to their own namespace and istio-system: ServiceMesh
proxies can communicate with any namespace participating in the mesh by default. The
optimization below reduces the scope of the mandatory namespaces, greatly lowering the
CPU and memory consumption of the different ServiceMesh pods and containers. This
resource must be created in all namespaces where InferenceServices will be deployed.

apiVersion: networking.istio.io/vlbetal
kind: Sidecar
metadata:

name: default

namespace: $namespace
spec:

egress:

- hosts:

-,
"istio-system/*"

We also had to use a small model (flan-t5-small) and reduce its CPU and memory requirements
as much as possible. In this many-model configuration, we chose not to perform any load test on
the models (they would not behave properly because of the hardware constraints). We
conducted 20 GRPC calls and ensured they did not fail to validate their functionality.

The deployment/validation scenario is as follows:

10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

for each of the 12 namespaces:
for each of the 17 model instances:
deploy the model instance
validate the model instance with 10 queries
validate each of the the 17 model instances with 10 queries

We reached the target of 204 with these procedures and settings. InferenceServices loaded in
the NVIDIA DGX-A100.

InferenceServices Progress

m Created

100%
= Ready

80%

60%

40%

Percentage of the 204 InferenceServices

20%

9
0 /60

15 20

Timeline, in minutes after the start time
Progress of the InferenceService creation and readiness over the test duration

This plot shows the number of InferenceServices created (blue)and the number

of InferenceServices ready to operate (red). We can see that overall, the curves are smooth
and have the same shape. This testifies that the controllers in charge of InferenceServices the
reconciliation are not saturated. They keep a fairly constant pace, as the distribution plot below
shows.

In the first five to seven minutes of the test, we can observe minor crank patterns. If the system
were to be saturated, such patterns would emerge at greater scales in the two lines.

9 0of 17 10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

10 of 17

Distribution of the InferenceServices load time

40

Inference Services Count

60 80

{ Load time (in seconds)

Distribution of the InferenceService load times

0% of the InferenceServices were ready in less than 36 seconds [min]

25% of the InferenceServices were ready in less than 42 seconds [Q1l]
50% of the InferenceServices were ready in less than 50 seconds (+ 8 s
75% of the InferenceServices were ready in less than 57 seconds (+ 7 s

90% of the InferenceServices were ready in less than 63 seconds (+ 6 s
100% of the InferenceServices were ready in less than 83 seconds (+ 2€

The plot above shows that the distribution of the delay between the creation and readiness of
each model remains low, for the deployment of all of the 204 models. This is the key result of this
test. We see that there is a factor of 2.3 between the fastest model load (36s) and the slowest
(83s), and 90% of the models were loaded in less than 63s. This confirms that the load time
dispersion is low, so even when a large number of models are being deployed in the system,
OpenShift Al users will not have to wait an unexpectedly long time before their model gets ready.

Future work

This article presented three different flavors of the performance and scale testing we executed
to validate the behavior of the GA version of the KServe component of Red Hat OpenShift Al 2.5:

¢ Single-model performance testing, which will be used for automated regression analyses.

¢ Multi-model performance and scale testing, which showed the model-serving stack can

10/20/25, 1:36 PM

Continuous performance and scale validation of Red Hat O... https://www.redhat.com/en/blog/continuous-performance-a...

handle a large number of concurrent users without performance degradation.

¢ Many-model scale testing, which highlighted that the stack can seamlessly handle the
deployment of more than 200 models within 35 minutes.

We're committed to integrating these tests into a continuous performance testing environment
as part of our upcoming work so that the release of a new OpenShift Al version can be gated by
performance regression analysis. This will also enable us to track and report performance
improvements over time.

We also plan on extending the automation to perform a more in-depth analysis similar to what we
carried out for the llama-2 model (see the Evaluating LLM Inference Performance on Red Hat
OpenShift Al blog post).

About the author

More like this

Blog post

11 of 17 10/20/25, 1:36 PM

https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues

